L’intelligence artificielle (IA) est-elle davantage un remède qu’un poison climatique ? Les géants de la tech, de Google à Microsoft, le clament haut et fort : les apports de ces technologies pour décarboner les économies et s’adapter au réchauffement seront à terme majeurs. A l’inverse, nombre d’experts préviennent que ces gains restent hypothétiques. L’empreinte carbone et la consommation électrique de services comme ChatGPT, d’ores et déjà importantes, risquent de devenir colossales. Ils appellent à la mesure face à une solution « utile » mais pas « miracle ».
Une meilleure connaissance du climat
L’IA est considérée comme un outil efficace pour mieux comprendre le changement climatique et répondre aux incertitudes qui persistent. Elle est de plus en plus utilisée dans les prévisions météorologiques, comme s’y emploie le Centre européen pour les prévisions météorologiques à moyen terme (ECMWF), et pour les simulations du climat du futur. Google Research a ainsi dévoilé, le 22 juillet, dans la revue britannique Nature, une nouvelle approche, NeuralGCM, mélangeant IA et modèles climatiques fondés sur la physique, afin de simuler la météo et le climat de la Terre jusqu’à 3 500 fois plus vite que d’autres modèles et de manière autant, voire plus, précise sur une majorité de paramètres.
L’IA sert aussi à mieux anticiper les événements extrêmes, notamment « les incendies, les avalanches ou la trajectoire et les changements brusques d’intensité des cyclones », explique Claire Monteleoni, titulaire de la chaire Choose France AI et directrice de recherche à l’Institut national de recherche en sciences et technologies du numérique (Inria). Dans le cadre du projet de recherche européen Xaida, le climatologue Pascal Yiou fait, quant à lui, appel à l’IA pour savoir si ces catastrophes sont dues au changement climatique d’origine humaine – ce que l’on appelle la science de l’attribution.
Il utilise aussi l’IA pour prédire la survenue d’événements rares, comme des canicules historiques, afin de mieux préparer la société. « Nous avons, par exemple, réalisé 10 000 simulations de l’été 2024 pour savoir ce qui pouvait arriver », explique le directeur de recherche au Laboratoire des sciences du climat et de l’environnement. L’exercice a pris une semaine pour former l’IA puis une dizaine de minutes pour produire des résultats. Deux ou trois mois auraient été nécessaires avec des modèles de climat qui tournent sur des supercalculateurs. « L’IA nous permet de tester davantage d’hypothèses et de répondre à des questions de recherche jusqu’à présent inaccessibles », juge M. Yiou.
Il vous reste 79.2% de cet article à lire. La suite est réservée aux abonnés.